Monte-Carlo Simulation of a Multi-Dimensional Switch-Like Model of Stem Cell Differentiation
نویسنده
چکیده
The process controlling the diferentiation of stem, or progenitor, cells into one specific functional direction is called lineage specification. An important characteristic of this process is the multi-lineage priming, which requires the simultaneous expression of lineage-specific genes. Prior to commitment to a certain lineage, it has been observed that these genes exhibit intermediate values of their expression levels. Multi-lineage differentiation has been reported for various progenitor cells [Hu et al., 1997, Akashi et al., 2003, Kim et al., 2005, Miyamoto et al., 2002, Swiers et al., 2006, Loose & Patient, 2006, Patient et al., 2007, Graf, 2002], and it has been explained through the bifurcation of a metastable state [Roeder & Glauche, 2006, Huang et al., 2007, Chickarmane et al., 2009]. During the differentiation process the dynamics of the core regulatory network follows a bifurcation, where the metastable state, corresponding to the progenitor cell, is destabilized and the system is forced to choose between the possible developmental alternatives. While this approach gives a reasonable interpretation of the cell fate decision process, it fails to explain the multi-lineage priming characteristic. Here, we describe a new multi-dimensional switch-like model that captures both the process of cell fate decision and the phenomenon of multi-lineage priming. We show that in the symmetrical interaction case, the system exhibits a new type of degenerate bifurcation, characterized by a critical hyperplane, containing an infinite number of critical steady states. This critical hyperplane may be interpreted as the support for the multi-lineage priming states of the progenitor. Also, the cell fate decision (the multi-stability and switching behavior) can be explained by a symmetry breaking in the parameter space of this critical hyperplane. These analytical results are confirmed by Monte-Carlo simulations of the corresponding chemical master equations.
منابع مشابه
Analysis of Response Robustness for a Multi-Objective Mathematical Model of Dynamic Cellular Manufacturing
The multi-objective optimization problem is the main purpose of generating an optimal set of targets known as Pareto optimal frontier to be provided the ultimate decision-makers. The final selection of point of Pareto frontier is usually made only based on the goals presented in the mathematical model to implement the considered system by the decision-makers. In this paper, a mathematical model...
متن کاملMonte Carlo Simulation of Radiation effects in protection layers of logical cell of the digital gate in the FPGA for electron and proton rays Using the FLUKA Code
In this paper, radiation effects in protection layers of logical cell of the digital gate in the FPGA for electron and proton rays was simulated Using the FLUKA Code. by using of the Monte Carlo simulation, the electron and proton transport into the logical cell of the digital gate in the FPGA will be studied. In this simulation, the maximum energy of the electrons and protons at the entrance o...
متن کاملTwo and Three Dimensional Monte Carlo Simulation of Magnetite Nanoparticle Based Ferrofluids
We have simulated a magnetite nanoparticle based ferrofluid using Monte Carlo method. Two and three dimensional Monte Carlo simulations have been done using parallel computing technique. The aggregation and rearrangement of nanoparticles embedded in a liquid carrier have been studied in various particle volume fractions. Our simulation results are in complete agreement with the reported experim...
متن کاملProbabilistic Multi Objective Optimal Reactive Power Dispatch Considering Load Uncertainties Using Monte Carlo Simulations
Optimal Reactive Power Dispatch (ORPD) is a multi-variable problem with nonlinear constraints and continuous/discrete decision variables. Due to the stochastic behavior of loads, the ORPD requires a probabilistic mathematical model. In this paper, Monte Carlo Simulation (MCS) is used for modeling of load uncertainties in the ORPD problem. The problem is formulated as a nonlinear constrained mul...
متن کاملPuraMatrix hydrogel enhances the expression of motor neuron progenitor marker and improves adhesion and proliferation of motor neuron-like cells
Objective(s): Cell therapy has provided clinical applications to the treatment of motor neuron diseases. The current obstacle in stem cell therapy is to direct differentiation of stem cells into neurons in the neurodegenerative disorders. Biomaterial scaffolds can improve cell differentiation and are widely used in translational medicine and tissue engineering. The aim...
متن کامل